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1 Linear spaces

1.1 Linear spaces

Definition Linear space |

A linear space X over a field K is a set with two operations:
e Addition: z,y € X — z+ye X
e Scalar multiplication: z € X, A e K = Az € X

and the following axioms that are satisfied for all z,y,z € X and A\, p € K:
l.z+y=y+=x
2. (z+ty)t+te=z+(y+2)
3. There exists an element 0 € X such that 2+ 0=z
4. There exists an element —z € X such that z 4+ (—x) =0
5. A(px) = p(Az)
6. lx =2

7. Mz +y) =+ Xy

8. AN+ pz=Ar+pux

Examples of linear spaces |

Kp—{(xl,xg,zg,...):ziGK, Zmi|p<oo} (p>1)

i=1
I = {(wl,mQ,xg,...) cx; €K, osup x| < oo}

C([a,b],K) ={f :[a,b] = K: f is continuous}

1.1.1 Quotient spaces

Definition Equivalence relation

~ is an equivalence relation on a set X if for all z,y,z € X:
l.x~zx
20 x~y &= y~x
. x~yandy~z = x~2

The equivalence class of z is [z] := {y € X : & ~ y}. The set of all equivalence classes is denoted X/ ~
The map 7 : X — X/ ~ given by w(z) = [z] is called the quotient map.

Lemma |

If X is a linear space and V' C X a linear subspace, then x ~y <= z —y € V is an equivalence relation on X.
Equivalence classes under this relation are denoted x + V.

Proposition Quotient space |

Continuing from the previous lemma, X/V := X/ ~ becomes a linear space with:

z+V)+(y+V)=(@x+y) +V Mz +V):=0x)+V
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1.1.2 Linear maps

Definition Linear map |

Let X,Y be linear spaces over K. A map T :dom7 — Y is a linear map if for all z,y € X and )\ € K:
1. the domain of T is a subspace of X
2. T(x+y) =Tz +Ty
3. T(Az) = \T(x)

We denote: L(X,Y):={T:X — Y : T is linear and domT = X} and L(X) := L(X, X).

Definition Sum of linear spaces |

The sum of linear subspaces V, W C X is defined as:
V+W:={z+y:xeV,yecW}

We speak of a direct sum if V N = {0}.

Definition Projection

P € L(X) is called a projection if P? = P

Lemma |

If P € L(X) is a projection, then
1. I — P is a projection
2. ran P = ker(I — P)
3. ker P =ran(I — P)
4. X =ker P +ran P is a direct sum, i.e. ran P Nker P = {0}

Theorem |

If X,Y are linear spaces, T' € L(X,Y) and V C kerT a linear subspace, then
T:X/V-oY z+4VeT(x)

is well-defined and linear.

Corollary |

If X,Y are linear spaces and T' € L(X,Y) then
T:X/kerT —ranT x+kerT — T()

is an isomorphism.

Theorem |

If X is a finite-dimensional linear space and V' C X a linear subspace, then

dim X/V =dim X — dimV

Corollary |

If X is a finite-dimensional linear space and T' € L(X,Y’), then

dimranT + dimker T = dim X
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1.1.3 Dual spaces

Definition Dual space

Let X be a linear space over K. Then the dual space of X is defined as:
X' = L(X,K)

Elements of this space are called functionals.

Lemma |

dmX =n<oo = dimX' =n

Definition Second dual space

Let X be a linear space over K. The second dual space of X is:
X" =L(X"|K)
We define the natural map as:

J: X=X" Ja)(f)=fz) zeX,feX

Proposition |

The natural map J is injective.

1.2 Normed linear spaces

Definition Norm |

A norm on a linear space X is a real-valued function X — R, x — ||z|| which satisfies:
L flz] > 0

2. |z]| =0 < 2=0

w

e+ yll < il + llyll
- Az]| = |A] - fjz|| for all A € K

N

Note: d(z,y) = ||z — y|| is a metric on X.
We abbreviate "normed linear space” by NLS.
If a norm does not satisfy axiom 2, then it is called a semi-norm.

Proposition p-norm on K" |

The following are norms on K":

® 1/p
lzllp = (Z |$i|”> |zloo = max{|a;| : i € {1,...,n}}
i=1

z||2 is called the Euclidean norm. ||z||, and ||z|/. are also norms on ¢P and ¢°° respectively.
p

Proposition p-norm on C([a, b], K)

The following are norms on C(a, b], K):

b 1/p
Hfb=</|ﬂﬂp®> I£lee = sup 1)

z€la,b]
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Lemma Proof of the triangle inequality for ||z||,

Young’s inequality: If 1 < p < oo and a,b > 0, then

P
=1 = abga—+—
p q

_|_

D=
Q| =

Holder’s inequality: If 1 < p < oo, then

n n l/p n l/q
=1 = Z; lzsyi| < <z; |3€z‘p> (Z; yi|q>

Minkowski’s inequality: If 1 < p < oo, then

n 1/p n p s n 1/p
(Z |z: + yi|p> < (Z |-73i|p> (Z |yi|p>
i=1 i=1 i=1

Lemma Reverse triangle inequa/ityl

_|_

SRR
Q|

If X is a normed vector space, then

Mzl =yl < llz =yl forallz,y e X

1.2.1 Convergence and equivalent norms

Definition Convergence of sequences |

A sequence (x,,) in a normed linear space X converges to x € X (denoted x,, — x) w.r.t. the norm || - || if

len —2|| =0 as n—0

or formally:
Ve>0 AN >0 suchthat n>N = |z, —z| <¢

Lemma Algebraic properties of limits

Tp = xin X = ||z,] = ||z in R
Tp > zandy, 2yin X = z,+y, >+yin X
Tz, v xinXand A\, > AInK = Az, > Az in X

Definition Equivalent norms |

Showing equivalence of norms is a possible exam question.
Two norms || - ||; and || - ||2 on X are called equivalent if there exist m, M > 0 such that

mlzly < ||z|l2 < Mjz|y  forallz e X

Lemma |

If || -]]1 and || - ||2 are equivalent, then

lz]h =0 < |jz|l2 =0

Theorem |

If X is finite-dimensional, then all norms on X are equivalent.
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1.3 Open, closed and compact sets

1.3.1 Open sets

Definition Open set |

The open e-ball centered at « € X is defined as:
B(x;e) ={y e X : |z —yll <&}

O C X is open if:
for all z € O there exists € > 0 such that B(z;e) C O

Proposition

|

If O C X is a linear subspace and O is open, then O = X

1.3.2 Closed sets and closure

Definition Distance between a point and a setl

Let z € X and v C X. The distance between z and V is defined as:

d(z, V) :=inf{||lz —v|| :v eV}

Definition Closure and closed sets |

Let V C X. The closure of V is defined as:
Vi={reX:dxV)=0}

A set is closed if it is equal to its closure.

Proposition

Vcv V=V V C X is closed <= V¢ is open

i

Lemma

If X isa NLS and V C X is a subset, then

r €V <= x, — x for some sequence (x,,) in V

Lemma

]

If V' is a finite-dimensional subspace of a NLS, then V is closed.

]

Lemma

The closure of a linear subspace is a linear subspace.

Proposition

|

If X isa NLS and V C X a linear subspace, then
1. |z + V|| :=d(x,V) is a semi-norm on X/V
2. |lx+ V] isanorm <= V is closed
3. lz+ V| < ||z| forall z € X

Lemma Riesz’ lemma |

If X isa NLS and V C X is a closed linear subspace with V' # X, then

for all 0 < X < 1 there exists x) € X such that ||z)]| =1 and ||zy —v|| > Aforallv e V
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1.3.3 Dense, seperable and compact sets

Definition Dense and seperable set

Let X be a metric space.
1. A subset E C X is called dense if E = X

2. X is called seperable if it contains a countable dense subset.

Theorem |

If X is a NLS, then
B={zxe X :|z|| <1}is compact = dimX < o0

Theorem |

Let X bea NLS and V C X.
If X is finite-dimensional:

V is compact <= V is closed and bounded

If X is infinite-dimensional:

V is compact = V is closed and bounded

1.4 Inner product spaces

Proposition Law of cosines |

Let || - || be the Euclidean norm, z,y € R?, and @ the angle between the vectors x and y.
& =yl = =] + |lyl|® = 2l|z]|[|y]| cos()

lz||ly]l cos @ = z1y1 + z2y2 cos(f) =0 <= z,y are perpendicular

Definition /nner product |

Let X be a linear space over K. A map (-,-) : X x X — K is called an inner product if:
L (z,z) >
2. (z,z) =0 < =0

3. Az +py,2) = Mz, z) + pu(y, z) forall A, p e K

4. (z,y) = (y,2) (if K =R, then (z,y) = (y,2))

We abbreviate "inner product space” by IPS.

(Conjugate-)linearity of the second component

ifK=R: (zAy+ puz)=XNaz,y)+ plz,z) ifK=C: (z,\y+uz)=Naz,y)+ @z, 2)

Lemma Cauchy-Schwarz inequality |

If X is an IPS, then for all z,y € X:
[z, y)|* < (2, 2)(y, 9)

Corollary |

If X is an IPS, then ||z|| = y/(x, ) is a norm. With this norm, we can write the Cauchy-Schwarz inequality as:

[z )| < ll2]] - llyll

Corollary |

If X is an IPS, x,, converges to x and y,, converges to y, then (x,,y,) converges to (x,y).
Here, the convergence is with respect to the norm induced by the inner product.
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Proposition Parallelogram Iawl

If ||z|| is defined by an inner product, then:

Iz +yl1* + o = yl* = 20zl + llylI*)

Proposition Parallelogram identityl

If ||| is defined by an inner product, then:

Az,y) = llz +ylI* = llz — yl* +illz + iyll* - ille - iy|?

only if K=C

Definition Orthogonality |

x and y are orthogonal (denoted z L y) if (z,y) = 0.

Theorem Pythagorean theoreml

zly = |lz+yl® =llzl® + [yl

1.4.1 Best approximations

Lemma |

If X is an IPS and V C X a subset, then the orthogonal complement of V' defined by
Vi={zecX:{(z,0)=0forallveV}

is a closed linear subspace.

Definition |

Let X be a NLS and V C X a subset. vy € V is called a best approximation of z € X if

|z —vo|| = d(z, V) :=inf{||z —v| : v €V}

Lemma |

Let X be an IPS and V C X a linear subspace. If x € X and vy € V, then

|z —vo| = d(z,V) <= z—vo eVt

Lemma |

If X is an IPS and V C X is a finite-dimensional linear subspace,
then for all x € X there exists a unique best approximation vy € V.

Theorem Computation of the best approximation in a finite-dimensional space |

Then vy = c1e1 + ... + cpey, is the unique best approximation of x, with ¢; = (x,e1).

Let X be an IPS, V C X a finite-dimensional linear subspace, and {ey, ..., e,} an orthonormal basis of V.

1.4.2 Orthonormal systems

Definition Orthonormal set |

ifi=j

1
If X is an IPS, then {e; : ¢ € I} C X is called an orthonormal set if L
0 ifi#j

Proposition

|

Orthonormal vectors are linearly independent
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Algorithm Gram-Schmidt procedure |

Let X be an IPS and let fy,..
There exist orthonormal vectors e, ..

_h
A

€1

€ = fo— (f2,e1)e1 e

., [ be linearly independent.
., en such that span{ey, ..
These vectors ¢; are constructed as follows:

€2

e

.,ex} =span{fi,...

k

k1 = frr1 — Y _{frrn,en)e

i=1

i) forall ke {1,...,n}

€rt1
ll€k+1ll

€L+1 =

1.5 Banach and Hilbert spaces

1.5.1 Banach spaces

Definition Cauchy sequence |

(z,,) is a Cauchy sequence in a normed linear space X if:

Ve >0 IN >0 suchthat nm >N = |z, —a,| <¢

Proposition |

Every convergent sequence is a Cauchy sequence. |

Definition Banach space

A normed linear space X is called a Banach space or complete space if every Cauchy sequence in X converges. |

|

Proposition

Every finite-dimensional normed linear space is a Banach space. |

Theorem |

The following are Banach spaces:

1. ¢? with the norm ||z||,
2. ¢°° with the norm ||z
3. C([a,b],K) with the norm || f] o

Note: C([a,b],K) is not complete with the norm || f||,.

Proposition |

If X isa NLS and V C X is a linear subspace, then:
1. X Banach and V closed = V Banach
2. V Banach = V closed in X

1.5.2 Hilbert spaces

Definition Hilbert space |

A Hilbert space is a Banach space of which the norm comes from an inner product.

Examples of Hilbert spaces |

These are the only examples of separable Hilbert spaces up to isomorphism:

K" (z,y):=) 2% |zll = (z2) 2 ey =) 2% |lz| =V (z2)
i=1 i=1
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Definition Convex set

A set V C X is called convex if:

2, ye€V = Xx+(1-NyeV forall Xe|0,1]

Theorem Existence and uniqueness of best approximations |

If X is a Hilbert space and V' C X is a nonempty, closed and convex subset, then

for all z € X there exists a unique v € V such that ||z — v|| = d(z, V)

Theorem Orthogonal decompositions

If X is a Hilbert space and V' C X is a closed linear subspace, then

for all z € X there exist unique v € V, w € V* such that z = v +w

Note: V and V= are Hilbert spaces, so we can again decompose v and w.

1.5.3 Completions

Theorem Completion theorem

Let X be a NLS. There exists a Banach space X and a linear map ¢ : X — X such that
1. X and ¢(X) are isometrically isomorphic

2. 1(X) is dense in X

Definition LP(a,b)

LP(a,b) is the completion of C([a, b], K) with respect to the norm || f|,.

Proposition |

b
L?(a,b) is a Hilbert space isomorphic to ¢2 with the inner product / f(t)g(t)dt

1.6 Orthonormal bases

Definition Hamel basis |

A subset B C X is called a Hamel basis if B is a set of linearly independent vectors and X = span(B).
This definition works if X is a finite-dimensional space and does not work for general separable Banach spaces.

Lemma Bessel’s inequality |

If X is an inner product space and {ej : k € N} is an orthonormal set, then

o0
> Ka,er)® < |lz|>  forallze X
k=1

In particular, the series on the left converges.

Theorem |

If X is a Hilbert space and {ej, : k € N} is an orthonormal set, then

o0 o0
Z)\kek converges in X < Z M2 <00 =
k=1 k=1

2 o0
=Dl
k=1

o0
E Ak€k
k=1
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Corollary |

If X is a Hilbert space and {ej, : k € N} is an orthonormal set, then

oo
E (x, e)ey converges for all z € X
k=1

Definition Orthonormal basis |

Let X be a Hilbert space. The orthonormal set {ej : k € N} is called an orthonormal basis for X if

span{e : k € N} = X

Theorem |

Let X be a Hilbert space and {ej : k € N} an orthonormal set. The following are equivalent:
1. {ex : k € N} form an orthonormal basis for X
2. {ex: k e N}t = {0}

3. |lz||2 = kzl |(z,er)|? for all z € X

18

4.z =) (x,ep)e forall z € X

k=1

Theorem |

If X is an infinite-dimensional Hilbert space, then

X has an orthonormal basis <= X is seperable

Corollary |

All separable infinite-dimensional Hilbert spaces are isomorphic with ¢2.

1.6.1 Fourier series

Proposition |

The functions 1,sin(kz), cos(kx) for k € N form an orthogonal basis for L.

Theorem Fourier series |

Any f € L?(—m, ) can be written as a Fourier series:

. 1 (7 1 (7
f(z) = % + ) (aycos(kxz) + by sin(kx)) ar = — f(z) cos(kzx) dz b, = — f(z) sin(kz) dx
™ ™
k=1 - -
The Fourier series converges with respect to the L% norm: lim |f(x) — sn(x)]?dz =0
n—oo | _

T

Proposition |

The functions by (z) = 2* with k € N are linearly independent, and their span is dense in C([—1,1],K) and L?(—1,1).
They are however not orthogonal.
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2 Linear operators

2.1 Bounded and invertible linear operators

2.1.1 Continuous operators

Definition Continuous linear operator |

Let X,Y be normed linear spaces and T' € L(X,Y). T is called continuous at z¢ € X if

Ve >0 36 >0 suchthat |zo—z||<d = ||T(xo) —T(z)|| <e forallzeX

Lemma |

continuity at 0 <= continuity at every g € X

Lemma |

continuity at 0 <= there exists ¢ > 0 such that ||Tz|| < ¢||z|| for all z € X

2.1.2 Bounded operators

Definition Bounded linear operatorl

Let X,Y linear spaces with norms || - ||x and || - ||y respectively, and T' € L(X,Y).
T is called bounded if there exists ¢ > 0 such that

1 Tzlly < cllz|x

Note: this does not imply |[|[Tz|| < ¢ for all x € X.

Definition Operator norm |

Computing an operator norm is a possible exam question.
Let X,Y be normed linear spaces and let T' € L(X,Y). If T is bounded, we define its operator norm by

T
7] = sup 122y
z#0 ||lzllx

2.1.3 Spaces of bounded operators

Definition B(X,Y)

B(X,Y)={T € L(X,Y) : T bounded}

Lemma |

B(X,Y) is a linear space, and the operator norm ||T'|| is a norm on B(X,Y)

Lemma |

If X and Y are normed linear spaces and 7' € B(X,Y), then

|Tz|| < ||T||||z]| for all z € X

Lemma |

Let X,Y, Z be normed linear spaces, T € B(X,Y) and S € B(Y,Z). Then

ST € B(X,2) ST < STl
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Lemma |

If T, € B(X,Y) and S,, € B(Y, Z) for all n € N, then
T, —Tand S, - S — S, T, - ST

Note: T;, — T means ||T,, — T||p(x,y) = 0

Theorem |

If X,Y are normed linear spaces, then

Y Banach = B(X,Y) Banach

2.1.4 Invertible operators

Definition |

T € B(X,Y) is called invertible if
1. T: X — Y is a bijection
2. T-! € B(Y,X)

Note: (1) does not imply (2).

Lemma |

T € B(X,Y) invertible <= there exists S € B(Y, X) such that ST =Ix and T'S = Iy

Theorem Computation of (I —T)~*

If X is Banach and T' € B(X, X), then

Z||Tk|<oo:> (I-T)~ ZT’“GB
k=0

In particular, this works when || T|| < 1, since ||T%| < ||T||*

2.2 Compact operators

2.2.1 Eigenspaces

Definition Eigenspace

Let T be a linear operator with some eigenvalue A. The eigenspace is defined as

Ey=%ker(T-M)={ze X :Tax= Az}

Proposition |

dimE\ < oo = By :={x € E) : ||z|]| < 1} is compact —> T'(B,) is compact

Definition Compact operator

T € L(X,Y) is compact if
V is a bounded set = T(V) is relatively compact

A set is relatively compact if its closure is compact.

Lemma |

T compact = T bounded
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Lemma |

The following are equivalent:
1. T € L(X,Y) is compact

2. (zp) is a bounded sequence = (T'z,,) has a convergent subsequence

Lemma |

If T'e B(X,Y) and the range of T is finite-dimensional, then T is compact.

2.2.2 Spaces of compact operators

Definition K(X,Y)

K(X,)Y)={T € L(X,Y) : T is compact}

Lemma |

1. K(X,Y) is a linear subspace of B(X,Y)
2. If T € B(X,Y) and S € B(Y, Z), then

T or S is compact = ST is compact

Theorem |

If X is a normed linear space and Y is Banach, then K(X,Y) is closed in B(X,Y).

Proving compactness of an operator |

Compactness of an operator T(X,Y") with Y Banach can be proven as follows:
1. Construct a bounded sequence T, converging to T', where ran T, is finite-dimensional for all finite n.
2. Since ran T, is finite-dimensional, and T, is bounded, each T,, is compact.
3. Show that T}, converges to T'.
4

. Since K(X,Y) is closed by the previous theorem, T' is compact.

2.2.3 Equicontinuity

Definition Equicontinuityl

A set V C C([a,b],K) is called equicontinuous if for all £ > 0 there exists ¢ > 0 such that
lt—yl <6 = |f(z)— fly)| <e forallz,y€la,b], feV

i.e. each f € V is uniformly continuous on [a, ], and for a given € the same & works for all f € V.

Theorem Arzela-Ascoli theoreml

If VC C([a, b],K), then

V relatively compact <= V bounded and equicontinuous

Theorem Integral operators |

Let G : [a,b] X [a,b] — K be continuous.
Operators T : C([a, ], K) — C([a, b],K) of the following forms are compact:

b a3
Fredholm operator: T f(z) :/ G(z,y)f(y)dy Volterra operator: T f(z) :/ G(z,y)f(y)dy
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2.3 Meager sets and semi-norms

2.3.1 Nowhere dense sets

Definition Interior |

Let M be a subset of a metric space (X, d). The interior of M, denoted int M, is the union of all open sets in M.
In other words, the interior of M is the largest open set contained in M.

Definition Nowhere dense set |

A subset M of a metric space (X, d) is called nowhere dense if int(M) = @

Proposition |

Let X be a NLS and V C X a closed linear subspace. Then if V' # X, V is nowhere dense.

Lemma |

If M C X is nowhere dense, then:

B(z;e)N(M)*#2 VreX Ve>0

2.3.2 Baire’s theorem

Definition Meager set |

A subset M C X of a metric space is meager if it can be written as a countable union of nowhere dense sets.

Theorem Baire's theorem |

If (X,d) is a complete metric space, then

O C X nonempty and open = O nonmeager

Proposition |

Let || - || be any norm on
P={p:K—K:pisa polynomial }

Then P is not a Banach space.

Proposition |

If X is Banach and infinite-dimensional, then there is no countable set (Hamel basis) that spans X.

2.3.3 Semi-norms

Definition Semi-norm |

A semi-norm on X is a map p: X — [0, 00) such that for all z,y € X, A € K
e p(z+y) < plx) +p(y)
e p(Az) = [Alp(z)

A semi-norm is a norm without the property z = 0 <= ||z|| = 0 (positive definiteness).

Proposition |

If Y isa NLS and T € L(X,Y), then p(z) = ||Tz|| is a semi-norm on X.
If T is injective, then ||T'z|| is a norm.

Definition Bounded semi-norm |

If X is a NLS, then a semi-norm p on X is bounded if there exists ¢ > 0 such that

p(x) <c||z|| forallze X




2.4 Open and closed operators 16

2 LINEAR OPERATORS

Proposition |

If p(x) = ||Tz||, then
T is bounded <= p is bounded

Lemma |

If a semi-norm p : X — [0, 00) is bounded, then

Ip(z) —p(y)| < cllz —y|| Vr,ye X

Hence, z, - ¢ = p(x,) — p(z).

2.3.4 Countable subadditivity

Lemma |

Bounded semi-norms are countably subadditive:

o0 o0 o0
ij convergent = p ij SZP(%‘)

Jj=1 Jj=1 Jj=1

Lemma Zabreiko's lemma |

Assume
e X is a Banach space
e p: X — [0,00) is a semi-norm

e p is countably subadditive:

o0 o0 o0
ij convergent = p ij SZP(%‘)

Jj=1 =1 j=1

Then p is bounded.

2.4 Open and closed operators

Note |

On the exam, you will have to use at least one of the following:
e Open mapping theorem
e Closed graph theorem

e Uniform boundedness principle

2.4.1 Open mapping theorem

Theorem Open mapping theoreml

If X,Y are Banach spaces, and T € B(X,Y) is surjective, then T is an open map:

O C X open = T(0O) CY open

Corollary |

If X,Y are Banach spaces, and T € B(X,Y) is bijective, then

T-' € B(Y, X)
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Theorem |

Assume X,Y are Banach and T' € B(X,Y). The following are equivalent:
1. There exists ¢ > 0 such that ||Tz| > c||z|| for all z € X.

2. T is injective and ran T is closed.

2.4.2 Closed graph theorem

Definition Graphs and closed operators |

Let X,Y be normed linear spaces and V' C X a linear subspace.

e The graph of T' € L(V,Y) is defined as
GT):={(z,Tx):z €V} CX xY

Note: G(X,Y) is a linear subspace of X x Y.
e The operator T is called closed if G(T) is closed in X x Y

Lemma |

(z,y) € G(T) <= there exists a sequence (z,,) such that z,, — = and Tz,, — y

Lemma |

If X,Y are normed linear spaces and V' C X a closed linear subspace, then

T € B(V,Y) = T is closed

Theorem Closed graph theorem

If X,Y are Banach spaces and V' C X a closed linear subspace, then

Tisclosed = T € B(V,Y)

2.4.3 Uniform boundedness principle

Theorem Uniform boundedness principle |

Assume X is Banach and Y is a NLS. For any set F' C B(X,Y) we have

sup ||Tz|| < oo forall z € X = sup ||T] < o
TeF TeR

Corollary |

Let X be a Banach space and Y be a NLS.
Let (7},) be a sequence in B(X,Y) such that T,z converges for all z € X.
If T'e L(X,Y) is defined pointwise by

Tx:= lim T,z
n—oo

then T € B(X,Y).




2.5 Spectra of linear operators 18 2 LINEAR OPERATORS

2.5 Spectra of linear operators

Definition Spectrum |

For X Banach (so the Open Mapping Theorem holds) and T' € B(X) we define the
e resolvent set: p(T) ={N e K: (T —\)~!' € B(X)}
e resolvent operator: R(\) = (T —X)"! X e p(T)
o spectrum: o(T) =K\ p(T)

Note: A will be used as a shorthand notation for AI from now on.
There will be an exam question about spectra. (possibly of the form " determine the spectrum of this operator”)

Definition Eigenvaluesl

If T € B(X), then
e )\ € K is called an eigenvalue of T' if there exists « # 0 such that (T'— X)z = 0 (or alternatively Tx = A\x)
e ker(T — ) is called the associated eigenspace.
e Nonzero elements of the eigenspace are called eigenvectors.

o The set of eigenvalues of T', denoted ¢, (T), is called the point spectrum of T

Lemma |

Assume X is Banach and T' € B(X). If [A| > ||T||, then

n=0

Corollary |

If A € o(T), then |A| < ||TI.

Lemma |

Assume X is Banach and T € B(X). If p € p(T) and |A — u| < m, then

oo

Aep(T) and R(A) = Z(,\ — W) R ()"

n=0

Corollary |

p(T) is open and o(T) is closed.

Definition |

A € K is called an approximate eigenvalue of T if there exists a sequence (z,,) such that

|lzn]| =1forallneN and (T =Nz, =0

Proposition Characterization of the resolvent set |

If X is Banach and T' € B(X), then X € p(T) if and only if:

ran(T'— A) densein X  and  ||(T — N)z| > ¢||lz|| forallz e X

Corollary Characterization of the spectrum |

If X is Banach and T' € B(X), then A € o(T) if and only if:

ran(T — A) not dense in X or A is an approximate eigenvalue
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Theorem Spectral mapping theoreml

Assume X is Banach over K= C and T € B(X). For any polynomial p : K — K we have

a(p(T)) = {p(N) : A€ o(T)}

Theorem Spectral theorem for compact operatorsl

If X is Banach and T' € K(X), then
1. For every € > 0, the number of eigenvalues A\ of T' with |A| > ¢ is finite.
2. If A # 0 is an eigenvalue of T, then dimker(7T — \) < oo
3. If dim X = oo, then 0 € o(T).

2.6 Adjoint operators
2.6.1 Adjoints in K"

Definition Adjoint of a matrix

The adjoint or conjugate transpose of a n x n matrix A over K is defined as:

A* = (A)T

Proposition |

For the standard inner product on K" we have (Az,y) = (z, A*y) for all z,y € K"

Definition Self-adjoint matrix

An n X n matrix is called self-adjoint if A* = A.

Proposition |

Self-adjoint matrices are diagonalizable and they have real eigenvalues.

2.6.2 Dual spaces

Definition Dual of a normed linear spacel

Let X be a normed linear space. Then the dual space of X is defined as X’ = B(X,K) with the following norm:

11 = sup L&)

Lemma |

Let X be an inner product space and y € X.
The map f: X — K defined by f(x) = (x,y) belongs to X’ and

LAl = Nyl

Theorem Riesz-Fréchet theorem |

Assume X is a Hilbert space. For each f € X' there exists a unique y € X such that

f(z) = (z,y) forallz € X
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2.6.3 Adjoints in Hilbert spaces

Theorem Existence of adjoints |

Let X,Y be Hilbert spaces and T' € B(X,Y).
There exists a unique adjoint operator T* € B(Y, X) such that

o (Tz,y)y = (z,T*y)x forallz€e X andy €Y
o |7 <|IT

Lemma Properties of adjoints |

Let X,Y be Hilbert spaces and T' € B(X,Y).
i, (T =17
2. T =T
3. |77 = ||T|*

Let X,Y, Z be Hilbert spaces.
1. T,S € B(X,Y) = (AT + pS)* = \T* + S*
2.TeB(X,Y)and Se (Y, Z) = (ST)*=T*S*
3. TeKX)Y) = T*e K(Y,X)

If T is invertible, then T is invertible and

Lemma Spectrum of adjoints

If T € B(X), then

p(T") = p(T) o(T*) = o(T)
Corollary |
If T is self-adjoint, then o(T) C R
Lemma Range/kernel orthogonality
For T € B(X) and A € K, we have
(ran(T — \))* = ker(T* — X) (ran(T* — X))+ = ker(T — \)

Corollary |

Let T € B(X) and A € K. We have the following orthogonal decompositions:

X = (ran(T — \))* @ ker(T* — X) X = (ran(T* — X)) @ ker(T — \)

2.6.4 Normal operators

Definition Normal and unitary operators

T € B(X) is normal if TT* = T*T.
T € B(X,Y) is unitary if T*T = Ix and TT* = Iy.

Lemma |

If T'e€ B(X) is normal, then ||Tz| = ||T*«|| for all z € X.

Corollary |

If T'e B(X) is normal, then for all A € K

ker(T™ — A\) = ker(T' — \)
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Lemma Resolvent set of a normal operator

If T'e€ B(X) is normal, then

p(T) ={A € K: there exists ¢ > 0 such that ||[(T' — \)z| > c||z|| Vz € X}

Corollary Spectrum of a normal operatorl

If T € B(X) is normal, then
o(T) ={X € K: there exists (z,) such that ||z,|| =1 and (T — \)z,, — 0}

i.e. the spectrum is equal to the set of approximate eigenvalues.

Lemma |

If T € B(X) is normal and X # p, then

Tr=Xxand Ty=py = (z,y)=0

2.7 Self-adjoint operators

Definition Self-adjoint operator

T € B(X) is self-adjoint if T = T*

Lemma |

Let X be a Hilbert space with K = C.

T is self-adjoint < (Tz,z) € R for all X

2.7.1 Nonnegative operators

Definition Nonnegative operator

T € B(X) is nonnegative, denoted T' > 0, if (T'z,z) > 0 for all z € X.

Corollary |

If K = C, then nonnegative operators are self-adjoint.

Lemma |

If P is an orthogonal projection, then P > 0.

Lemma |

If T is nonnegative, then
|Tx||? < |T|(Tz,2) forallze X

Lemma |

If T is nonnegative, then

1T = HSIHlp (Tz,x)
z||=1
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2.7.2 Spectra of self-adjoint operators

Definition a and b

For a self-adjoint operator T' € B(X) we define

a:= inf (Txz,z) b:= sup (Tx,x)
llzll=1 llzll=1
Lemma |
T—al >0 bI —T >0

Theorem |

If T is self-adjoint, then
1. Tz = Az and Ty = py with X # p implies (z,y) =0
2. o(T) only contains approximate eigenvalues
3. o(T) C [a,]
4. a,beo(T)
Note: 1) and 2) follow from T being normal.

Theorem |

If T is self-adjoint, then
|7l = sup [(Tz,z)| = max{|al, [b]}

llzll=1

2.7.3 Eigenvalues of compact self-adjoint operators

Proposition |

If T is compact and self-adjoint, then ||T|| or —||T|| (or both) is an eigenvalue.

Lemma |

If V' is a linear subspace of X and T' € B(X), then

TV)CV = T*(VYH) cvt

Theorem Diagonalization theorem |

e countably many real eigenvalues \;
e countably many orthonormal eigenvectors e;

such that

Ty = Z)\i@c, e;)e;

If X is a Hilbert space and T' € B(X) is self-adjoint and compact, then there exist:
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2.8 Hahn-Banach theorem
2.8.1 Ordering of sets

Definition Partial order |

Assume X is a nonempty set. < is called a partial order on X if
l. z<zforallz € X
2.z2yandy <z = z=y
. z=yandy=<xz = x <Xz

=< is called a total order if for all z,y € X we have

=Xy o y=3czx

Definition Upper bound and maximal element

If < is a partial order on X and V C X, then y € X is called
e an upper bound for V ifz Jy forallz € V

e a maximal element of X if y <2z — y==x

Lemma Zorn’s lemma |

Let X # @ be partially ordered.
If every totally ordered subset of X has an upper bound in X, then X has a maximal element.

2.8.2 Hahn-Banach theorem

Theorem Hahn-Banach theorem

Assume that
e X is a linear space
e V C X is a proper linear subspace (V # {0} and V # X)
o p: X —[0,00) is a semi-norm

e f € L(V,K) satisfies the bound
|f(z)| < p(x) forallz e V

Then there exists F' € L(X,K) such that
Flv=f |F(z)| < p(x) for all z € X

(Note: F' [ V denotes "F restricted to V")

Theorem Hahn-Banach theorem for normed linear spacesl

If X is a normed linear space and V' C X is a linear subspace, then for all f € V' there exists F' € X’ such that
Flv=f IEN = 1171

Note: || f]| is the operator norm on V, and || F|| is the operator norm on X.
Exercises will only use this version of the Hahn-Banach theorem, you don’t have to remember the other one.

2.8.3 Applications

Proposition |

If X is a normed linear space and z,y € X are distinct, then there exists f € X’ such that

£l =1 f(@) # fy)
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Proposition |

If X is a normed linear space and zy € X is nonzero, then there exists f € X’ such that

Il =1 f(@o) = [l

Corollary

i

The norm of any nonzero zy € X can be written as

lzoll = sup{|f(zo)| : f € X", I f] =1}

Proposition |

If X is a normed linear space and V' C X is a finite-dimensional linear subspace,
then there exists P € B(X) such that
pP2=p ranP =V
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