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2 1 LINEAR SPACES

1 Linear spaces

1.1 Linear spaces

Definition Linear space

A linear space X over a field K is a set with two operations:

• Addition: x, y ∈ X =⇒ x+ y ∈ X

• Scalar multiplication: x ∈ X,λ ∈ K =⇒ λx ∈ X

and the following axioms that are satisfied for all x, y, z ∈ X and λ, µ ∈ K:

1. x+ y = y + x

2. (x+ y) + z = x+ (y + z)

3. There exists an element 0 ∈ X such that x+ 0 = x

4. There exists an element −x ∈ X such that x+ (−x) = 0

5. λ(µx) = µ(λx)

6. 1x = x

7. λ(x+ y) = λx+ λy

8. (λ+ µ)x = λx+ µx

Examples of linear spaces

ℓp =

{
(x1, x2, x3, . . . ) : xi ∈ K,

∞∑
i=1

|xi|p < ∞

}
(p ≥ 1)

ℓ∞ =

{
(x1, x2, x3, . . . ) : xi ∈ K, sup |xi| < ∞

}
C([a, b],K) = {f : [a, b] → K : f is continuous}

1.1.1 Quotient spaces

Definition Equivalence relation

∼ is an equivalence relation on a set X if for all x, y, z ∈ X:

1. x ∼ x

2. x ∼ y ⇐⇒ y ∼ x

3. x ∼ y and y ∼ z =⇒ x ∼ z

The equivalence class of x is [x] := {y ∈ X : x ∼ y}. The set of all equivalence classes is denoted X/ ∼
The map π : X → X/ ∼ given by π(x) = [x] is called the quotient map.

Lemma

If X is a linear space and V ⊂ X a linear subspace, then x ∼ y ⇐⇒ x− y ∈ V is an equivalence relation on X.
Equivalence classes under this relation are denoted x+ V .

Proposition Quotient space

Continuing from the previous lemma, X/V := X/ ∼ becomes a linear space with:

(x+ V ) + (y + V ) := (x+ y) + V λ(x+ V ) := (λx) + V
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1.1.2 Linear maps

Definition Linear map

Let X,Y be linear spaces over K. A map T : domT → Y is a linear map if for all x, y ∈ X and λ ∈ K:

1. the domain of T is a subspace of X

2. T (x+ y) = Tx+ Ty

3. T (λx) = λT (x)

We denote: L(X,Y ) := {T : X → Y : T is linear and domT = X} and L(X) := L(X,X).

Definition Sum of linear spaces

The sum of linear subspaces V,W ⊂ X is defined as:

V +W := {x+ y : x ∈ V, y ∈ W}

We speak of a direct sum if V ∩W = {0}.

Definition Projection

P ∈ L(X) is called a projection if P 2 = P

Lemma

If P ∈ L(X) is a projection, then

1. I − P is a projection

2. ranP = ker(I − P )

3. kerP = ran(I − P )

4. X = kerP + ranP is a direct sum, i.e. ranP ∩ kerP = {0}

Theorem

If X,Y are linear spaces, T ∈ L(X,Y ) and V ⊂ kerT a linear subspace, then

T̂ : X/V → Y x+ V 7→ T (x)

is well-defined and linear.

Corollary

If X,Y are linear spaces and T ∈ L(X,Y ) then

T̂ : X/ kerT → ranT x+ kerT 7→ T (x)

is an isomorphism.

Theorem

If X is a finite-dimensional linear space and V ⊂ X a linear subspace, then

dimX/V = dimX − dimV

Corollary

If X is a finite-dimensional linear space and T ∈ L(X,Y ), then

dim ranT + dimkerT = dimX
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1.1.3 Dual spaces

Definition Dual space

Let X be a linear space over K. Then the dual space of X is defined as:

X ′ = L(X,K)

Elements of this space are called functionals.

Lemma

dimX = n < ∞ =⇒ dimX ′ = n

Definition Second dual space

Let X be a linear space over K. The second dual space of X is:

X ′′ = L(X ′,K)

We define the natural map as:

J : X → X ′′ J(x)(f) = f(x) x ∈ X, f ∈ X ′

Proposition

The natural map J is injective.

1.2 Normed linear spaces

Definition Norm

A norm on a linear space X is a real-valued function X → R, x 7→ ∥x∥ which satisfies:

1. ∥x∥ ≥ 0

2. ∥x∥ = 0 ⇐⇒ x = 0

3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥

4. ∥λx∥ = |λ| · ∥x∥ for all λ ∈ K

Note: d(x, y) = ∥x− y∥ is a metric on X.
We abbreviate ”normed linear space” by NLS.
If a norm does not satisfy axiom 2, then it is called a semi-norm.

Proposition p-norm on Kn

The following are norms on Kn:

∥x∥p =

(
n∑

i=1

|xi|p
)1/p

∥x∥∞ = max{|xi| : i ∈ {1, . . . , n}}

∥x∥2 is called the Euclidean norm. ∥x∥p and ∥x∥∞ are also norms on ℓp and ℓ∞ respectively.

Proposition p-norm on C([a, b],K)

The following are norms on C([a, b],K):

∥f∥p =

(ˆ b

a

|f(x)|p dx

)1/p

∥f∥∞ = sup
x∈[a,b]

|f(x)|
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Lemma Proof of the triangle inequality for ∥x∥p

Young’s inequality: If 1 < p < ∞ and a, b ≥ 0, then

1

p
+

1

q
= 1 =⇒ ab ≤ ap

p
+

bq

q

Hölder’s inequality: If 1 < p < ∞, then

1

p
+

1

q
= 1 =⇒

n∑
i=1

|xiyi| ≤

(
n∑

i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

Minkowski’s inequality: If 1 < p < ∞, then(
n∑

i=1

|xi + yi|p
)1/p

≤

(
n∑

i=1

|xi|p
)1/p( n∑

i=1

|yi|p
)1/p

Lemma Reverse triangle inequality

If X is a normed vector space, then

|∥x∥ − ∥y∥| ≤ ∥x− y∥ for all x, y ∈ X

1.2.1 Convergence and equivalent norms

Definition Convergence of sequences

A sequence (xn) in a normed linear space X converges to x ∈ X (denoted xn → x) w.r.t. the norm ∥ · ∥ if

∥xn − x∥ → 0 as n → 0

or formally:
∀ε > 0 ∃N > 0 such that n ≥ N =⇒ ∥xn − x∥ ≤ ε

Lemma Algebraic properties of limits

xn → x in X =⇒ ∥xn∥ → ∥x∥ in R
xn → x and yn → y in X =⇒ xn + yn → x+ y in X

xn → x in X and λn → λ in K =⇒ λnxn → λx in X

Definition Equivalent norms

Showing equivalence of norms is a possible exam question.
Two norms ∥ · ∥1 and ∥ · ∥2 on X are called equivalent if there exist m,M > 0 such that

m∥x∥1 ≤ ∥x∥2 ≤ M∥x∥1 for all x ∈ X

Lemma

If ∥ · ∥1 and ∥ · ∥2 are equivalent, then
∥x∥1 → 0 ⇐⇒ ∥x∥2 → 0

Theorem

If X is finite-dimensional, then all norms on X are equivalent.
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1.3 Open, closed and compact sets

1.3.1 Open sets

Definition Open set

The open ε-ball centered at x ∈ X is defined as:

B(x; ε) = {y ∈ X : ∥x− y∥ < ε}

O ⊂ X is open if:
for all x ∈ O there exists ε > 0 such that B(x; ε) ⊂ O

Proposition

If O ⊂ X is a linear subspace and O is open, then O = X

1.3.2 Closed sets and closure

Definition Distance between a point and a set

Let x ∈ X and v ⊂ X. The distance between x and V is defined as:

d(x, V ) := inf{∥x− v∥ : v ∈ V }

Definition Closure and closed sets

Let V ⊂ X. The closure of V is defined as:

V := {x ∈ X : d(x, V ) = 0}

A set is closed if it is equal to its closure.

Proposition

V ⊂ V V = V V ⊂ X is closed ⇐⇒ V c is open

Lemma

If X is a NLS and V ⊂ X is a subset, then

x ∈ V ⇐⇒ xn → x for some sequence (xn) in V

Lemma

If V is a finite-dimensional subspace of a NLS, then V is closed.

Lemma

The closure of a linear subspace is a linear subspace.

Proposition

If X is a NLS and V ⊂ X a linear subspace, then

1. ∥x+ V ∥ := d(x, V ) is a semi-norm on X/V

2. ∥x+ V ∥ is a norm ⇐⇒ V is closed

3. ∥x+ V ∥ ≤ ∥x∥ for all x ∈ X

Lemma Riesz’ lemma

If X is a NLS and V ⊂ X is a closed linear subspace with V ̸= X, then

for all 0 < λ < 1 there exists xλ ∈ X such that ∥xλ∥ = 1 and ∥xλ − v∥ > λ for all v ∈ V
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1.3.3 Dense, seperable and compact sets

Definition Dense and seperable set

Let X be a metric space.

1. A subset E ⊂ X is called dense if E = X

2. X is called seperable if it contains a countable dense subset.

Theorem

If X is a NLS, then
B = {x ∈ X : ∥x∥ ≤ 1} is compact =⇒ dimX < ∞

Theorem

Let X be a NLS and V ⊂ X.
If X is finite-dimensional:

V is compact ⇐⇒ V is closed and bounded

If X is infinite-dimensional:
V is compact =⇒ V is closed and bounded

1.4 Inner product spaces

Proposition Law of cosines

Let ∥ · ∥ be the Euclidean norm, x, y ∈ R2, and θ the angle between the vectors x and y.

∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2∥x∥∥y∥ cos(θ)

∥x∥∥y∥ cos θ = x1y1 + x2y2 cos(θ) = 0 ⇐⇒ x, y are perpendicular

Definition Inner product

Let X be a linear space over K. A map ⟨·, ·⟩ : X ×X → K is called an inner product if:

1. ⟨x, x⟩ ≥ 0

2. ⟨x, x⟩ = 0 ⇐⇒ x = 0

3. ⟨λx+ µy, z⟩ = λ⟨x, z⟩+ µ⟨y, z⟩ for all λ, µ ∈ K

4. ⟨x, y⟩ = ⟨y, x⟩ (if K = R, then ⟨x, y⟩ = ⟨y, x⟩)

We abbreviate ”inner product space” by IPS.

(Conjugate-)linearity of the second component

if K = R : ⟨x, λy + µz⟩ = λ⟨x, y⟩+ µ⟨x, z⟩ if K = C : ⟨x, λy + µz⟩ = λ⟨x, y⟩+ µ⟨x, z⟩

Lemma Cauchy-Schwarz inequality

If X is an IPS, then for all x, y ∈ X:
|⟨x, y⟩|2 ≤ ⟨x, x⟩⟨y, y⟩

Corollary

If X is an IPS, then ∥x∥ =
√

⟨x, x⟩ is a norm. With this norm, we can write the Cauchy-Schwarz inequality as:

|⟨x, y⟩| ≤ ∥x∥ · ∥y∥

Corollary

If X is an IPS, xn converges to x and yn converges to y, then ⟨xn, yn⟩ converges to ⟨x, y⟩.
Here, the convergence is with respect to the norm induced by the inner product.
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Proposition Parallelogram law

If ∥x∥ is defined by an inner product, then:

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2)

Proposition Parallelogram identity

If ∥x∥ is defined by an inner product, then:

4⟨x, y⟩ = ∥x+ y∥2 − ∥x− y∥2 +i∥x+ iy∥2 − i∥x− iy∥2︸ ︷︷ ︸
only if K=C

Definition Orthogonality

x and y are orthogonal (denoted x ⊥ y) if ⟨x, y⟩ = 0.

Theorem Pythagorean theorem

x ⊥ y =⇒ ∥x+ y∥2 = ∥x∥2 + ∥y∥2

1.4.1 Best approximations

Lemma

If X is an IPS and V ⊂ X a subset, then the orthogonal complement of V defined by

V ⊥ = {x ∈ X : ⟨x, v⟩ = 0 for all v ∈ V }

is a closed linear subspace.

Definition

Let X be a NLS and V ⊂ X a subset. v0 ∈ V is called a best approximation of x ∈ X if

∥x− v0∥ = d(x, V ) := inf{∥x− v∥ : v ∈ V }

Lemma

Let X be an IPS and V ⊂ X a linear subspace. If x ∈ X and v0 ∈ V , then

∥x− v0∥ = d(x, V ) ⇐⇒ x− v0 ∈ V ⊥

Lemma

If X is an IPS and V ⊂ X is a finite-dimensional linear subspace,
then for all x ∈ X there exists a unique best approximation v0 ∈ V .

Theorem Computation of the best approximation in a finite-dimensional space

Let X be an IPS, V ⊂ X a finite-dimensional linear subspace, and {e1, . . . , en} an orthonormal basis of V .
Then v0 = c1e1 + . . .+ cnen is the unique best approximation of x, with ci = ⟨x, e1⟩.

1.4.2 Orthonormal systems

Definition Orthonormal set

If X is an IPS, then {ei : i ∈ I} ⊂ X is called an orthonormal set if

{
1 if i = j

0 if i ̸= j

Proposition

Orthonormal vectors are linearly independent
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Algorithm Gram-Schmidt procedure

Let X be an IPS and let f1, . . . , fn be linearly independent.
There exist orthonormal vectors e1, . . . , en such that span{e1, . . . , ek} = span{f1, . . . , fk} for all k ∈ {1, . . . , n}
These vectors ei are constructed as follows:

e1 =
f1
∥f1∥

ẽ2 = f2 − ⟨f2, e1⟩e1 e2 =
ẽ2
∥ẽ2∥

ẽk+1 = fk+1 −
k∑

i=1

⟨fk+1, ei⟩ei ek+1 =
ẽk+1

∥ẽk+1∥

1.5 Banach and Hilbert spaces

1.5.1 Banach spaces

Definition Cauchy sequence

(xn) is a Cauchy sequence in a normed linear space X if:

∀ε > 0 ∃N > 0 such that n,m ≥ N =⇒ ∥xn − xm∥ ≤ ε

Proposition

Every convergent sequence is a Cauchy sequence.

Definition Banach space

A normed linear space X is called a Banach space or complete space if every Cauchy sequence in X converges.

Proposition

Every finite-dimensional normed linear space is a Banach space.

Theorem

The following are Banach spaces:

1. ℓp with the norm ∥x∥p
2. ℓ∞ with the norm ∥x∥∞
3. C([a, b],K) with the norm ∥f∥∞

Note: C([a, b],K) is not complete with the norm ∥f∥p.

Proposition

If X is a NLS and V ⊂ X is a linear subspace, then:

1. X Banach and V closed =⇒ V Banach

2. V Banach =⇒ V closed in X

1.5.2 Hilbert spaces

Definition Hilbert space

A Hilbert space is a Banach space of which the norm comes from an inner product.

Examples of Hilbert spaces

These are the only examples of separable Hilbert spaces up to isomorphism:

Kn ⟨x, y⟩ :=
n∑

i=1

xiyi ∥x∥ =
√
⟨x, x⟩ ℓ2 ⟨x, y⟩ :=

∞∑
i=1

xiyi ∥x∥ =
√

⟨x, x⟩
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Definition Convex set

A set V ⊂ X is called convex if:

x, y ∈ V =⇒ λx+ (1− λ)y ∈ V for all λ ∈ [0, 1]

Theorem Existence and uniqueness of best approximations

If X is a Hilbert space and V ⊂ X is a nonempty, closed and convex subset, then

for all x ∈ X there exists a unique v ∈ V such that ∥x− v∥ = d(x, V )

Theorem Orthogonal decompositions

If X is a Hilbert space and V ⊂ X is a closed linear subspace, then

for all x ∈ X there exist unique v ∈ V, w ∈ V ⊥ such that x = v + w

Note: V and V ⊥ are Hilbert spaces, so we can again decompose v and w.

1.5.3 Completions

Theorem Completion theorem

Let X be a NLS. There exists a Banach space X̃ and a linear map ι : X → X̃ such that

1. X and ι(X) are isometrically isomorphic

2. ι(X) is dense in X̃

Definition Lp(a, b)

Lp(a, b) is the completion of C([a, b],K) with respect to the norm ∥f∥p.

Proposition

L2(a, b) is a Hilbert space isomorphic to ℓ2 with the inner product

ˆ b

a

f(t)g(t) dt

1.6 Orthonormal bases

Definition Hamel basis

A subset B ⊂ X is called a Hamel basis if B is a set of linearly independent vectors and X = span(B).
This definition works if X is a finite-dimensional space and does not work for general separable Banach spaces.

Lemma Bessel’s inequality

If X is an inner product space and {ek : k ∈ N} is an orthonormal set, then

∞∑
k=1

|⟨x, ek⟩|2 ≤ ∥x∥2 for all x ∈ X

In particular, the series on the left converges.

Theorem

If X is a Hilbert space and {ek : k ∈ N} is an orthonormal set, then

∞∑
k=1

λkek converges in X ⇐⇒
∞∑
k=1

|λk|2 < ∞ =⇒

∥∥∥∥∥
∞∑
k=1

λkek

∥∥∥∥∥
2

=

∞∑
k=1

|λk|2
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Corollary

If X is a Hilbert space and {ek : k ∈ N} is an orthonormal set, then

∞∑
k=1

⟨x, ek⟩ek converges for all x ∈ X

Definition Orthonormal basis

Let X be a Hilbert space. The orthonormal set {ek : k ∈ N} is called an orthonormal basis for X if

span{ek : k ∈ N} = X

Theorem

Let X be a Hilbert space and {ek : k ∈ N} an orthonormal set. The following are equivalent:

1. {ek : k ∈ N} form an orthonormal basis for X

2. {ek : k ∈ N}⊥ = {0}

3. ∥x∥2 =
∞∑
k=1

|⟨x, ek⟩|2 for all x ∈ X

4. x =
∞∑
k=1

⟨x, ek⟩ek for all x ∈ X

Theorem

If X is an infinite-dimensional Hilbert space, then

X has an orthonormal basis ⇐⇒ X is seperable

Corollary

All separable infinite-dimensional Hilbert spaces are isomorphic with ℓ2.

1.6.1 Fourier series

Proposition

The functions 1, sin(kx), cos(kx) for k ∈ N form an orthogonal basis for L2.

Theorem Fourier series

Any f ∈ L2(−π, π) can be written as a Fourier series:

f(x) =
a0
2

+

∞∑
k=1

(ak cos(kx) + bk sin(kx)) ak =
1

π

ˆ π

−π

f(x) cos(kx) dx bk =
1

π

ˆ π

−π

f(x) sin(kx) dx

The Fourier series converges with respect to the L2 norm: lim
n→∞

ˆ π

−π

|f(x)− sn(x)|2 dx = 0

Proposition

The functions bk(x) = xk with k ∈ N are linearly independent, and their span is dense in C([−1, 1],K) and L2(−1, 1).
They are however not orthogonal.
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2 Linear operators

2.1 Bounded and invertible linear operators

2.1.1 Continuous operators

Definition Continuous linear operator

Let X,Y be normed linear spaces and T ∈ L(X,Y ). T is called continuous at x0 ∈ X if

∀ε > 0 ∃δ > 0 such that ∥x0 − x∥ < δ =⇒ ∥T (x0)− T (x)∥ < ε for all x ∈ X

Lemma

continuity at 0 ⇐⇒ continuity at every x0 ∈ X

Lemma

continuity at 0 ⇐⇒ there exists c > 0 such that ∥Tx∥ ≤ c∥x∥ for all x ∈ X

2.1.2 Bounded operators

Definition Bounded linear operator

Let X,Y linear spaces with norms ∥ · ∥X and ∥ · ∥Y respectively, and T ∈ L(X,Y ).
T is called bounded if there exists c > 0 such that

∥Tx∥Y ≤ c∥x∥X

Note: this does not imply ∥Tx∥ ≤ c for all x ∈ X.

Definition Operator norm

Computing an operator norm is a possible exam question.
Let X,Y be normed linear spaces and let T ∈ L(X,Y ). If T is bounded, we define its operator norm by

∥T∥ = sup
x ̸=0

∥Tx∥Y
∥x∥X

2.1.3 Spaces of bounded operators

Definition B(X,Y )

B(X,Y ) = {T ∈ L(X,Y ) : T bounded}

Lemma

B(X,Y ) is a linear space, and the operator norm ∥T∥ is a norm on B(X,Y )

Lemma

If X and Y are normed linear spaces and T ∈ B(X,Y ), then

∥Tx∥ ≤ ∥T∥∥x∥ for all x ∈ X

Lemma

Let X,Y, Z be normed linear spaces, T ∈ B(X,Y ) and S ∈ B(Y,Z). Then

ST ∈ B(X,Z) ∥ST∥ ≤ ∥S∥∥T∥
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Lemma

If Tn ∈ B(X,Y ) and Sn ∈ B(Y,Z) for all n ∈ N, then

Tn → T and Sn → S =⇒ SnTn → ST

Note: Tn → T means ∥Tn − T∥B(X,Y ) → 0

Theorem

If X,Y are normed linear spaces, then

Y Banach =⇒ B(X,Y ) Banach

2.1.4 Invertible operators

Definition

T ∈ B(X,Y ) is called invertible if

1. T : X → Y is a bijection

2. T−1 ∈ B(Y,X)

Note: (1) does not imply (2).

Lemma

T ∈ B(X,Y ) invertible ⇐⇒ there exists S ∈ B(Y,X) such that ST = IX and TS = IY

Theorem Computation of (I − T )−1

If X is Banach and T ∈ B(X,X), then

∞∑
k=0

∥T k∥ ≤ ∞ =⇒ (I − T )−1 =

∞∑
k=0

T k ∈ B(X)

In particular, this works when ∥T∥ < 1, since ∥T k∥ ≤ ∥T∥k

2.2 Compact operators

2.2.1 Eigenspaces

Definition Eigenspace

Let T be a linear operator with some eigenvalue λ. The eigenspace is defined as

Eλ = ker(T − λI) = {x ∈ X : Tx = λx}

Proposition

dimEλ < ∞ =⇒ Bλ := {x ∈ Eλ : ∥x∥ ≤ 1} is compact =⇒ T (Bλ) is compact

Definition Compact operator

T ∈ L(X,Y ) is compact if

V is a bounded set =⇒ T (V ) is relatively compact

A set is relatively compact if its closure is compact.

Lemma

T compact =⇒ T bounded
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Lemma

The following are equivalent:

1. T ∈ L(X,Y ) is compact

2. (xn) is a bounded sequence =⇒ (Txn) has a convergent subsequence

Lemma

If T ∈ B(X,Y ) and the range of T is finite-dimensional, then T is compact.

2.2.2 Spaces of compact operators

Definition K(X,Y )

K(X,Y ) = {T ∈ L(X,Y ) : T is compact}

Lemma

1. K(X,Y ) is a linear subspace of B(X,Y )

2. If T ∈ B(X,Y ) and S ∈ B(Y,Z), then

T or S is compact =⇒ ST is compact

Theorem

If X is a normed linear space and Y is Banach, then K(X,Y ) is closed in B(X,Y ).

Proving compactness of an operator

Compactness of an operator T (X,Y ) with Y Banach can be proven as follows:

1. Construct a bounded sequence Tn converging to T , where ranTn is finite-dimensional for all finite n.

2. Since ranTn is finite-dimensional, and Tn is bounded, each Tn is compact.

3. Show that Tn converges to T .

4. Since K(X,Y ) is closed by the previous theorem, T is compact.

2.2.3 Equicontinuity

Definition Equicontinuity

A set V ⊂ C([a, b],K) is called equicontinuous if for all ε > 0 there exists δ > 0 such that

|x− y| < δ =⇒ |f(x)− f(y)| < ε for all x, y ∈ [a, b], f ∈ V

i.e. each f ∈ V is uniformly continuous on [a, b], and for a given ε the same δ works for all f ∈ V .

Theorem Arzelà-Ascoli theorem

If V ⊂ C([a, b],K), then

V relatively compact ⇐⇒ V bounded and equicontinuous

Theorem Integral operators

Let G : [a, b]× [a, b] → K be continuous.
Operators T : C([a, b],K) → C([a, b],K) of the following forms are compact:

Fredholm operator: Tf(x) =

ˆ b

a

G(x, y)f(y) dy Volterra operator: Tf(x) =

ˆ x

a

G(x, y)f(y) dy
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2.3 Meager sets and semi-norms

2.3.1 Nowhere dense sets

Definition Interior

Let M be a subset of a metric space (X, d). The interior of M , denoted intM , is the union of all open sets in M .
In other words, the interior of M is the largest open set contained in M .

Definition Nowhere dense set

A subset M of a metric space (X, d) is called nowhere dense if int(M) = ∅

Proposition

Let X be a NLS and V ⊂ X a closed linear subspace. Then if V ̸= X, V is nowhere dense.

Lemma

If M ⊂ X is nowhere dense, then:

B(x; ε) ∩ (M)c ̸= ∅ ∀x ∈ X ∀ε > 0

2.3.2 Baire’s theorem

Definition Meager set

A subset M ⊂ X of a metric space is meager if it can be written as a countable union of nowhere dense sets.

Theorem Baire’s theorem

If (X, d) is a complete metric space, then

O ⊂ X nonempty and open =⇒ O nonmeager

Proposition

Let ∥ · ∥ be any norm on
P = {p : K → K : p is a polynomial }

Then P is not a Banach space.

Proposition

If X is Banach and infinite-dimensional, then there is no countable set (Hamel basis) that spans X.

2.3.3 Semi-norms

Definition Semi-norm

A semi-norm on X is a map p : X → [0,∞) such that for all x, y ∈ X, λ ∈ K

• p(x+ y) ≤ p(x) + p(y)

• p(λx) = |λ|p(x)

A semi-norm is a norm without the property x = 0 ⇐⇒ ∥x∥ = 0 (positive definiteness).

Proposition

If Y is a NLS and T ∈ L(X,Y ), then p(x) = ∥Tx∥ is a semi-norm on X.
If T is injective, then ∥Tx∥ is a norm.

Definition Bounded semi-norm

If X is a NLS, then a semi-norm p on X is bounded if there exists c > 0 such that

p(x) ≤ c∥x∥ for all x ∈ X
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Proposition

If p(x) = ∥Tx∥, then
T is bounded ⇐⇒ p is bounded

Lemma

If a semi-norm p : X → [0,∞) is bounded, then

|p(x)− p(y)| ≤ c∥x− y∥ ∀x, y ∈ X

Hence, xn → x =⇒ p(xn) → p(x).

2.3.4 Countable subadditivity

Lemma

Bounded semi-norms are countably subadditive:

∞∑
j=1

xj convergent =⇒ p

 ∞∑
j=1

xj

 ≤
∞∑
j=1

p(xj)

Lemma Zabrĕıko’s lemma

Assume

• X is a Banach space

• p : X → [0,∞) is a semi-norm

• p is countably subadditive:

∞∑
j=1

xj convergent =⇒ p

 ∞∑
j=1

xj

 ≤
∞∑
j=1

p(xj)

Then p is bounded.

2.4 Open and closed operators

Note

On the exam, you will have to use at least one of the following:

• Open mapping theorem

• Closed graph theorem

• Uniform boundedness principle

2.4.1 Open mapping theorem

Theorem Open mapping theorem

If X,Y are Banach spaces, and T ∈ B(X,Y ) is surjective, then T is an open map:

O ⊂ X open =⇒ T (O) ⊂ Y open

Corollary

If X,Y are Banach spaces, and T ∈ B(X,Y ) is bijective, then

T−1 ∈ B(Y,X)
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Theorem

Assume X,Y are Banach and T ∈ B(X,Y ). The following are equivalent:

1. There exists c > 0 such that ∥Tx∥ ≥ c∥x∥ for all x ∈ X.

2. T is injective and ranT is closed.

2.4.2 Closed graph theorem

Definition Graphs and closed operators

Let X,Y be normed linear spaces and V ⊂ X a linear subspace.

• The graph of T ∈ L(V, Y ) is defined as

G(T ) := {(x, Tx) : x ∈ V } ⊂ X × Y

Note: G(X,Y ) is a linear subspace of X × Y .

• The operator T is called closed if G(T ) is closed in X × Y

Lemma

(x, y) ∈ G(T ) ⇐⇒ there exists a sequence (xn) such that xn → x and Txn → y

Lemma

If X,Y are normed linear spaces and V ⊂ X a closed linear subspace, then

T ∈ B(V, Y ) =⇒ T is closed

Theorem Closed graph theorem

If X,Y are Banach spaces and V ⊂ X a closed linear subspace, then

T is closed =⇒ T ∈ B(V, Y )

2.4.3 Uniform boundedness principle

Theorem Uniform boundedness principle

Assume X is Banach and Y is a NLS. For any set F ⊂ B(X,Y ) we have

sup
T∈F

∥Tx∥ < ∞ for all x ∈ X =⇒ sup
T∈F

∥T∥ < ∞

Corollary

Let X be a Banach space and Y be a NLS.
Let (Tn) be a sequence in B(X,Y ) such that Tnx converges for all x ∈ X.
If T ∈ L(X,Y ) is defined pointwise by

Tx := lim
n→∞

Tnx

then T ∈ B(X,Y ).
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2.5 Spectra of linear operators

Definition Spectrum

For X Banach (so the Open Mapping Theorem holds) and T ∈ B(X) we define the

• resolvent set: ρ(T ) = {λ ∈ K : (T − λI)−1 ∈ B(X)}

• resolvent operator: R(λ) = (T − λI)−1 λ ∈ ρ(T )

• spectrum: σ(T ) = K \ ρ(T )

Note: λ will be used as a shorthand notation for λI from now on.
There will be an exam question about spectra. (possibly of the form ”determine the spectrum of this operator”)

Definition Eigenvalues

If T ∈ B(X), then

• λ ∈ K is called an eigenvalue of T if there exists x ̸= 0 such that (T − λ)x = 0 (or alternatively Tx = λx)

• ker(T − λ) is called the associated eigenspace.

• Nonzero elements of the eigenspace are called eigenvectors.

• The set of eigenvalues of T , denoted σp(T ), is called the point spectrum of T .

Lemma

Assume X is Banach and T ∈ B(X). If |λ| > ∥T∥, then

λ ∈ ρ(T ) and R(λ) = −
∞∑

n=0

Tn

λn+1

Corollary

If λ ∈ σ(T ), then |λ| ≤ ∥T∥.

Lemma

Assume X is Banach and T ∈ B(X). If µ ∈ ρ(T ) and |λ− µ| < 1
∥R(µ)∥ , then

λ ∈ ρ(T ) and R(λ) =

∞∑
n=0

(λ− µ)nR(µ)n+1

Corollary

ρ(T ) is open and σ(T ) is closed.

Definition

λ ∈ K is called an approximate eigenvalue of T if there exists a sequence (xn) such that

∥xn∥ = 1 for all n ∈ N and (T − λ)xn → 0

Proposition Characterization of the resolvent set

If X is Banach and T ∈ B(X), then λ ∈ ρ(T ) if and only if:

ran(T − λ) dense in X and ∥(T − λ)x∥ ≥ c∥x∥ for all x ∈ X

Corollary Characterization of the spectrum

If X is Banach and T ∈ B(X), then λ ∈ σ(T ) if and only if:

ran(T − λ) not dense in X or λ is an approximate eigenvalue
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Theorem Spectral mapping theorem

Assume X is Banach over K = C and T ∈ B(X). For any polynomial p : K → K we have

σ(p(T )) = {p(λ) : λ ∈ σ(T )}

Theorem Spectral theorem for compact operators

If X is Banach and T ∈ K(X), then

1. For every ε > 0, the number of eigenvalues λ of T with |λ| > ε is finite.

2. If λ ̸= 0 is an eigenvalue of T , then dimker(T − λ) < ∞

3. If dimX = ∞, then 0 ∈ σ(T ).

2.6 Adjoint operators

2.6.1 Adjoints in Kn

Definition Adjoint of a matrix

The adjoint or conjugate transpose of a n× n matrix A over K is defined as:

A∗ = (A)⊤

Proposition

For the standard inner product on Kn we have ⟨Ax, y⟩ = ⟨x,A∗y⟩ for all x, y ∈ Kn

Definition Self-adjoint matrix

An n× n matrix is called self-adjoint if A∗ = A.

Proposition

Self-adjoint matrices are diagonalizable and they have real eigenvalues.

2.6.2 Dual spaces

Definition Dual of a normed linear space

Let X be a normed linear space. Then the dual space of X is defined as X ′ = B(X,K) with the following norm:

∥f∥ = sup
x ̸=0

|f(x)|
∥x∥

Lemma

Let X be an inner product space and y ∈ X.
The map f : X → K defined by f(x) = ⟨x, y⟩ belongs to X ′ and

∥f∥ = ∥y∥

Theorem Riesz-Fréchet theorem

Assume X is a Hilbert space. For each f ∈ X ′ there exists a unique y ∈ X such that

f(x) = ⟨x, y⟩ for all x ∈ X
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2.6.3 Adjoints in Hilbert spaces

Theorem Existence of adjoints

Let X,Y be Hilbert spaces and T ∈ B(X,Y ).
There exists a unique adjoint operator T ∗ ∈ B(Y,X) such that

• ⟨Tx, y⟩Y = ⟨x, T ∗y⟩X for all x ∈ X and y ∈ Y

• ∥T ∗∥ ≤ ∥T∥

Lemma Properties of adjoints

Let X,Y be Hilbert spaces and T ∈ B(X,Y ).

1. (T ∗)∗ = T

2. ∥T ∗∥ = ∥T∥

3. ∥T ∗T∥ = ∥T∥2

Let X,Y, Z be Hilbert spaces.

1. T, S ∈ B(X,Y ) =⇒ (λT + µS)∗ = λT ∗ + µS∗

2. T ∈ B(X,Y ) and S ∈ (Y,Z) =⇒ (ST )∗ = T ∗S∗

3. T ∈ K(X,Y ) =⇒ T ∗ ∈ K(Y,X)

If T is invertible, then T ∗ is invertible and
(T ∗)−1 = (T−1)∗

Lemma Spectrum of adjoints

If T ∈ B(X), then
ρ(T ∗) = ρ(T ) σ(T ∗) = σ(T )

Corollary

If T is self-adjoint, then σ(T ) ⊆ R

Lemma Range/kernel orthogonality

For T ∈ B(X) and λ ∈ K, we have

(ran(T − λ))⊥ = ker(T ∗ − λ) (ran(T ∗ − λ))⊥ = ker(T − λ)

Corollary

Let T ∈ B(X) and λ ∈ K. We have the following orthogonal decompositions:

X = (ran(T − λ))⊥ ⊕ ker(T ∗ − λ) X = (ran(T ∗ − λ))⊥ ⊕ ker(T − λ)

2.6.4 Normal operators

Definition Normal and unitary operators

T ∈ B(X) is normal if TT ∗ = T ∗T .
T ∈ B(X,Y ) is unitary if T ∗T = IX and TT ∗ = IY .

Lemma

If T ∈ B(X) is normal, then ∥Tx∥ = ∥T ∗x∥ for all x ∈ X.

Corollary

If T ∈ B(X) is normal, then for all λ ∈ K

ker(T ∗ − λ) = ker(T − λ)
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Lemma Resolvent set of a normal operator

If T ∈ B(X) is normal, then

ρ(T ) = {λ ∈ K : there exists c > 0 such that ∥(T − λ)x∥ ≥ c∥x∥ ∀x ∈ X}

Corollary Spectrum of a normal operator

If T ∈ B(X) is normal, then

σ(T ) = {λ ∈ K : there exists (xn) such that ∥xn∥ = 1 and (T − λ)xn → 0}

i.e. the spectrum is equal to the set of approximate eigenvalues.

Lemma

If T ∈ B(X) is normal and λ ̸= µ, then

Tx = λx and Ty = µy =⇒ ⟨x, y⟩ = 0

2.7 Self-adjoint operators

Definition Self-adjoint operator

T ∈ B(X) is self-adjoint if T = T ∗

Lemma

Let X be a Hilbert space with K = C.

T is self-adjoint ⇐⇒ ⟨Tx, x⟩ ∈ R for all X

2.7.1 Nonnegative operators

Definition Nonnegative operator

T ∈ B(X) is nonnegative, denoted T ≥ 0, if ⟨Tx, x⟩ ≥ 0 for all x ∈ X.

Corollary

If K = C, then nonnegative operators are self-adjoint.

Lemma

If P is an orthogonal projection, then P ≥ 0.

Lemma

If T is nonnegative, then
∥Tx∥2 ≤ ∥T∥⟨Tx, x⟩ for all x ∈ X

Lemma

If T is nonnegative, then
∥T∥ = sup

∥x∥=1

⟨Tx, x⟩
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2.7.2 Spectra of self-adjoint operators

Definition a and b

For a self-adjoint operator T ∈ B(X) we define

a := inf
∥x∥=1

⟨Tx, x⟩ b := sup
∥x∥=1

⟨Tx, x⟩

Lemma

T − aI ≥ 0 bI − T ≥ 0

Theorem

If T is self-adjoint, then

1. Tx = λx and Ty = µy with λ ̸= µ implies ⟨x, y⟩ = 0

2. σ(T ) only contains approximate eigenvalues

3. σ(T ) ⊂ [a, b]

4. a, b ∈ σ(T )

Note: 1) and 2) follow from T being normal.

Theorem

If T is self-adjoint, then
∥T∥ = sup

∥x∥=1

|⟨Tx, x⟩| = max{|a|, |b|}

2.7.3 Eigenvalues of compact self-adjoint operators

Proposition

If T is compact and self-adjoint, then ∥T∥ or −∥T∥ (or both) is an eigenvalue.

Lemma

If V is a linear subspace of X and T ∈ B(X), then

T (V ) ⊂ V =⇒ T ∗(V ⊥) ⊂ V ⊥

Theorem Diagonalization theorem

If X is a Hilbert space and T ∈ B(X) is self-adjoint and compact, then there exist:

• countably many real eigenvalues λi

• countably many orthonormal eigenvectors ei

such that
Tx =

∑
i

λi⟨x, ei⟩ei
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2.8 Hahn-Banach theorem

2.8.1 Ordering of sets

Definition Partial order

Assume X is a nonempty set. ⪯ is called a partial order on X if

1. x ⪯ x for all x ∈ X

2. x ⪯ y and y ⪯ x =⇒ x = y

3. x ⪯ y and y ⪯ z =⇒ x ⪯ z

⪯ is called a total order if for all x, y ∈ X we have

x ⪯ y or y ⪯ x

Definition Upper bound and maximal element

If ⪯ is a partial order on X and V ⊂ X, then y ∈ X is called

• an upper bound for V if x ⪯ y for all x ∈ V

• a maximal element of X if y ⪯ x =⇒ y = x

Lemma Zorn’s lemma

Let X ̸= ∅ be partially ordered.
If every totally ordered subset of X has an upper bound in X, then X has a maximal element.

2.8.2 Hahn-Banach theorem

Theorem Hahn-Banach theorem

Assume that

• X is a linear space

• V ⊂ X is a proper linear subspace (V ̸= {0} and V ̸= X)

• p : X → [0,∞) is a semi-norm

• f ∈ L(V,K) satisfies the bound
|f(x)| ≤ p(x) for all x ∈ V

Then there exists F ∈ L(X,K) such that

F ↾ V = f |F (x)| ≤ p(x) for all x ∈ X

(Note: F ↾ V denotes ”F restricted to V ”.)

Theorem Hahn-Banach theorem for normed linear spaces

If X is a normed linear space and V ⊂ X is a linear subspace, then for all f ∈ V ′ there exists F ∈ X ′ such that

F ↾ V = f ∥F∥ = ∥f∥

Note: ∥f∥ is the operator norm on V , and ∥F∥ is the operator norm on X.
Exercises will only use this version of the Hahn-Banach theorem, you don’t have to remember the other one.

2.8.3 Applications

Proposition

If X is a normed linear space and x, y ∈ X are distinct, then there exists f ∈ X ′ such that

∥f∥ = 1 f(x) ̸= f(y)
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Proposition

If X is a normed linear space and x0 ∈ X is nonzero, then there exists f ∈ X ′ such that

∥f∥ = 1 f(x0) = ∥x0∥

Corollary

The norm of any nonzero x0 ∈ X can be written as

∥x0∥ = sup{|f(x0)| : f ∈ X ′, ∥f∥ = 1}

Proposition

If X is a normed linear space and V ⊂ X is a finite-dimensional linear subspace,
then there exists P ∈ B(X) such that

P 2 = P ranP = V
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